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Synopsis

In a self-consistent perturbation treatment, the stopping power of matter for swift charged 
particles is conveniently expressed by means of the dielectric constant. In the present paper 
we have studied the results for degenerate, free electron gases, using an explicit expression for 
the dielectric constant, as derived previously. Approximate results for the stopping at low and 
high velocities are obtained. At low velocities the stopping is closely proportional to particle 
velocity, while at high velocities the corrections to the familiar logarithmic dependence on 
velocity are analogous to atomic shell corrections. The analytic results are compared with di
rect numerical computations, the results of which are presented in the form of tables and figures.

We prove, and make extensive use of, an equipartition rule, stating exact equality of 
the stopping contributions from, respectively, close collisions and distant resonance collisions. 
Possible applications of the results to stopping in other media are discussed.
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§ 1. Introduction

The stopping power of a free electron gas for swift heavy particles of 
low charge is of considerable interest to actual slowing-down problems.

In point of fact, the free electron gas oilers an interesting illustration of 
properties of atomic systems, and the effect of particle interaction on oscil
lator strength distribution. The free electron gas also elucidates the important 
question of deviations from the Bethe-Bloch stopping formula at moderate 
and low velocities.(1)

A basic approximation in the theory of slowing-down is to consider the 
effect of the particle as a perturbation, so that the energy loss is proportional 
to the square of the particle charge. In this case, the theory of slowing
down is simplified to a treatment of properties of the medium only, and 
a linear description of these properties may be applied. The linear pro
perties of an infinite gas of free electrons can be described by the longi
tudinal and transverse dielectric constants el(k, co) and etr which are 
complex functions of wave number and frequency, and which contain col
lective as well as individual particle aspects of the gas.

In the following non-relativistic problems we need only consider the 
longitudinal dielectric constant el, which function gives the connection be
tween the Fourier components of the total potential,

0(7, t) = >?0(î,co)ei^-fcü' ,
fc.co

and those of the source charge density q0 through the relation

co) A'2 ø(å~, co) = 4tco0(A', co). (1)

For a heavy particle of charge Zre and velocity o, the source density is 
given by = Z1eô(Jrcorresponding to rectilinear motion. In
troducing this charge density in (1), we immediately obtain the retarding 
force acting on the particle, i. e. the specific energy loss. For a gas of den
sity n electrons per unit volume it is convenient to write the resulting stopping 
formula in the form
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where m is the electron mass, and L the dimensionless quantity

z CdkCkv. ! 1
L ------2t 7 -j-r-----ttcoo Jo k \El(k,M) (3)

We have here introduced the plasma frequency to0, given by 

2 ÅTtne2

It may he noted that in the retarded e1, as used here, the imaginary part is 
an odd function of co, whereas the real part is even in co. The bounds | co | < ku 
in the integration over co in (3) is simply due to conservation of total energy 
and momentum between the heavy particle and the system of electrons.

The formula (2) may be used for any atomic system if n is interpreted 
as the atomic number times the number of atoms per unit volume. The 
Bethe-Bloch formula, without relativistic corrections, is then given by (2) 
with

(4)

where the average excitation potential I is a constant characteristic of the 
substance in question.

The present work was commenced as an attempt to get comparatively 
accurate estimates of stopping by an electron gas for various gas densities, 
and at any velocity of a heavy penetrating particle. Previous estimates 
have been more or less qualitative, and we thought it worth-while to make 
numerical calculations, based on a simple dielectric constant of the gas. 
In this connection we also utilized the analytic properties of the dielectric 
constant. Thus, we had recourse to the Bethe sum rule, at moderate and 
high particle velocities, and to asymptotic expansions at low and high velo
cities. However, prompted by intricacies of the numerical calculations along 
the plasma resonance curve, we found that quite other types of summation 
rules could be useful. In particular, we have applied an equipartition rule, 
stating equality of stopping contributions from plasma resonance excitation 
and close collisions with gas electrons. In the equipartition rule, summation 
is made at constant phase velocity, a)fk, of the emitted waves, corresponding 
to a definite direction of emission of energy.

By the above means, a comparatively accurate description is obtained 
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of the energy dissipation by charged particles in a degenerate electron gas. 
It appears to us that the results for free electron gases, in particular as re
gards deviations from the Bethe-Bloch formula (4), may be carried over 
to atoms. Thus, in the whole region of low particle velocities, where the so- 
called shell corrections have been used, the present corrections to stopping 
power may be summed over the electron density distribution of atoms. 
This seems justified already from the circumstance that the first terms in 
series developments of the correction in both distant and close collisions 
are the same for the electron gas as in the Bethe-Walske procedure.

In § 2 we discuss main features of slowing-down, based on the simple 
dielectric constant. We make asymptotic expansions at low and high particle 
velocities, and utilize summation rules. We briefly mention the connection 
to slowing-down by atoms. The numerical computations are presented in 
§ 3. In § 4 the equipartition rule is derived.

§ 2. Dielectric Constant and Basic Theoretical Treatment

The stopping of a particle as a function of its velocity may be computed 
from (3) by analytical or numerical means, if the dielectric constant is 
known. For a free electron gas, a quantum mechanical perturbation treat
ment leads to the following general formula for the dielectric constant to 
first order <2)

Here, En is the energy and kn the wave vector of the electron in the n’th 
state. The distribution function f(En) is an even function of kn, and nor
malized so that N = Sf(En) is the total number of electrons. In equation (5) 

n
we shall consider only the retarded dielectric constant of a system in its 
ground state, corresponding to a small positive value of ô.

In the case of a degenerate free electron gas with Fermi energy EF the 
distribution function is f(En) = 1 for En<EF, and f(En) = 0 for En>EF. 
The Fermi energy is related to the density n of the gas by the familiar re
lation
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the form

(6)

where

AO,") =

and
(6')(

f2(u,-) = £_{1-(z-77)2}, for

dimensionless variables z and

co

(?)

1
2

1 7
8z'

7T

211’

1
81

The summation in (5) may now be performed and the result is conveniently 
written i n

fl

u , mr i z — u i i .

The variables k and co are here replaced by 
u, where

(i-o-U)*}iog

.. i 2 , v„s
Ep = Ö IJWF = ----  = - ( 3 .-T2 77 ) “'32 2 m 2 m

z + ii + 1
7+77 - 1

z = ör and 11 = L- • 2kp kvp

Moreover, the parameter /2 in (6), defined by

e2 /2 = _.£_. , 
“ zihup

is proportional to n1/3. At the same time, /2 is a measure of the ratio between 
the potential energy of two neighbouring particles and their kinetic energy. 
This indicates that only for small values of %2 can the present free particle 
picture be used.

It should be noted that our present approximate dielectric constant is 
based on a first order perturbation procedure starting from free electrons, 
and with self-consistent fields. In higher order, account can be taken of the 
circumstance that the electrons are not free; corrections of this type are 
important mainly when /2 ~ 1, i.e. at low gas densities.

When one introduces the dielectric constant (6) of the free gas in (3), 
the factor L in the specific energy loss takes the form <2>
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L=~z\ > udu \zdz Im < j-0
n/, »'o »o e

71 *' o «’o
z3f2(u,z)

WA(«,z)P+M(«,z)r

(8)

It is seen from (6) that the integral (8) receives contributions from the do
main |u —z\< 1 where f2Çu,z) =4=0, and also from a curve in the region 
u>z+l, for which el = 0, i.e. z2 +/2/'1(u, z) = 0. In the latter case the 
double integral degenerates to a line integral. The former contribution 

Fig. 1. The quantity A = -z Im (l/el- 1) as a function of the parameters u and z for = 0.1. 
Numbers indicated on the figure give values of A times 104, at the points u = 0, 0.1, 0.2, . . . 
etc., and z = 0, 0.1, 0.2, . . . etc. Contour lines are drawn through points where 104-A equals 
respectively 5, 10, 20, 40, 80, 160 and 320, The position of the resonance curve is also indicated. 
At the point where it joins the domain | u-z | < 1, it has the line u = z + 1 as a tangent.
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mainly corresponds to close collisions, while the latter arises from plasma 
resonance at distant collisions.

The behaviour of the integrand in (8) is illustrated in Fig. 1, for the 
case /2 = 0.1. In particular, the figure indicates the magnitude of the ab
sorption in the area between the two parallel lines u = z + 1 and u = z - I . 
These lines correspond to absorption by electrons at the Fermi surface 
having, respectively, momentum parallel and antiparallel to the momentum 
transfer k. Roughly, there is a maximum of absorption at u = z, but fol
low values of z the behaviour is more complicated. In the neighbourhood 
of (", u) = (0,1) the absorption tends quickly to zero, whereas a strong 
absorption is found as a continuation of the resonance curve. This curve 
has the line u = z + 1 as a tangent, in the point (u0-l,u0) where it joins the 
domain |u-r| < 1. For the purpose of an investigation of the behaviour 
of the resonance curve further apart from this domain, we perform a series 
expansion of j\(u, z) in (6'), assuming |u —c| to be large compared to unity:

(9)

The position of the resonance curve is determined by the dispersion relation 
el = 0, i.e. according to (9)

y2 3 3 vF2
u2 = ~-2+ .-+........... . or w = w0 + Å- -F............... (10)3;- a 10 wo

In the limit of large zz, the dispersion relation (10) approaches the hyperbola 
it z = %/j/3 , or a = w0.

In § 3 we give the results of numerical evaluation of the double integral 
(8). Before that we shall discuss on an analytic basis the behaviour of L 
in the extremes of low and high velocities. In equation (8) the velocity v 
is measured in units of the Fermi velocity vF. In the following, however, 
it turns out that, instead of v/vF, the parameter

(H)

will be useful. The variable y measures the velocity in a unit (/zw0/2 zn)1/2, 
defined by the plasma frequency.

Low velocities.
For extremely low particle velocities we lind directly from (8) and (6') 

that L is approximately proportional to v3, i.e.<2)
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Fable 1
The coefficients Cx and ■ (z2/3)3/4 as functions of the density parameter %2 in 
(7). These coefficients determine the asymptotic behaviour of Z. for low particle 

velocities.

Z2.....................................
Q
Ci • (z2/3)3/4.................

0.01 0.02154 0.04642 0.1 0.3163 1.0
1.823 1.463 1.108 0.787 0.387 0.134
0.0253 0.0361 0.0486 0.0614 0.0716 0.0587

where

The function Cx(/) has been evaluated numerically for six values of /2, 
and the results are given in Table 1, together with Cr • (%2/3)3/4, which is 
the coefficient of y3/2 in (12). It is seen from Table 1 that this coefficient 
is nearly independent of the density of the gas, varying by less than a factor 
of 3, when the density changes by a factor of 106. For comparison, it may 
be mentioned that /2 = 1 corresponds to n = 0.84- 1022 cm-3.

We note that the function Cx(%) can be approximated quite well by 
substituting for ^(O,;) the first two terms in a series expansion in powers 
of z2, i.e.

It then follows from (13) that

ci(z) 2

1
log -

+ |z2
2z

1 Z2

3 ~ '

* + |z2

(14)

(15)

The accuracy of this approximation is illustrated in Fig. 2. The coefficient 
of y3/2 in (12) with Cx(/) determined by (15) is here compared with the 
result of the numerical integration of (13).

The approximation used in (12)—(15) implies that L behaves as p3, i.e. 
stopping is proportional to velocity. The velocity region in which this pro
portionality holds may be inferred from the numerical results in §3. It 
is seen from Fig. 5 that the approximation remains quite accurate even 
when v/uF becomes as large as ~ 1.
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Fig. 2. The coefficient Ct • (x2/3)3/4 as a function of /2. The full-drawn curve was obtained from 
numerical integration of (13). For comparison the approximate formula (15) is also shown 

(dashed curve). The two curves join when £2~0.1.

High velocities.
Consider next the case of large, but not relativistic, particle velocities. 

As mentioned in the introduction, in this limit the general formula (2) is 
reduced to the simple Bethe-Bloch formula (4) for any atomic system. In 
order to compute the average excitation potential I and stopping at large 
velocities, one usually has recourse to the Bethe sum rule for generalized 
oscillator strengths. For a free electron gas, the Bethe sum rule is(3>

f * co / 1 \
------2 \~Ï7~1---- V-1 =1- (16) oc iTtcoo \ el(k,co) I

A brief discussion of (16) is given in §4.
The sum rule (16) contains an unbounded integration over co for fixed k. 

Now, for some values of k the integration over co in (3) can in fact be ex
tended to infinity if only e has no imaginary part and no zeros outside the 
co-interval | co | < kv. If this condition is fulfilled in the À-interval kmln<k< 
Àmax, we fiHd immediately from (16) that this À-interval gives the contribu
tion log (Àmax/Àmin) to L. It is qualitatively clear that for a heavy particle 
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of high velocity an upper limit, A/cmax, is given by 2mu, the maximum 
momentum transfer to a free electron at rest, while the lower limit, À'min, 
is the adiabatic one, of order of co0/m This simple consideration therefore 
leads to an estimate of L approximately given by (4) with I *ho) n.

In order to obtain an accurate estimate of I, as well as correction terms 
to (4) at finite velocities, we may formulate the above consideration in the 
more convenient u, ^-variables. The double integral has the bounds 0 < z< x, 
0< u< v/vF. It is seen directly from Fig. 3 that, except for the three shaded

Fig. 3. Illustration of those regions in the u, z-plane, where Im(l/«I —1) is non-vanishing. In 
the text is explained the meaning of the shaded areas, and of zmax and -min-

areas, the integral may instead be given the bounds 0< u< °o and "min< -< 
zmax. Here, the upper limit is given by cmax = p/pf, while zmin is the 
value of z at the resonance curve (10) for u = v/i>F. For large velocities this 
leads to zmin ^ZFf/(p|/3). It is easily shown that the corrections to L 
from the three shaded areas tend to zero in the limit of high velocities. 
Firstly, in the two hatched domains the contributions to the integrand 
(8) tend to zero, while the areas remain constant. Secondly, in the cross
hatched domain (z<zmin<< 1, 0<u<z+l), the integrand as well as 
the area tend to zero; in fact, the integral vanishes as constant • z4min. 
Applying the sum rule (16) we therefore obtain in the limit of large velo
cities the formula (4) with

/ = fico0. (17)

Having determined the asymptotic stopping formula, i.e. the constant 
I in (4), we may next consider deviations from it at lower velocities. The 
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deviations are analogous to the so-called shell corrections in the atomic 
case, as treated by Bethe, Walske<4\ and others. The shell corrections to 
be added to (4) are normally denoted as - C[Z, Z being the atomic number 
of the medium. In the atomic case, as well as in the present case, several 
types of estimates of the corrections may be used. Thus, numerical evalua
tions may be attempted; this has proved rather difficult to carry through 
completely in the atomic case, whereas the results for an electron gas are 
easily obtained, cf. §3. Also, at high velocities a series expansion in powers 
of 1/v2 may Be attempted. The series expansion is again comparatively 
simple for the electron gas.

We consider at lirst accurate formulae for the corrections to (4). As 
before, for large values of u we are concerned with stopping contributions 
from the two branches illustrated in Fig. 3, i.e. resonance absorption and 
close collisions. It would be comparatively easy to make separate compu
tations for each of the two branches. Il is simpler, however, to apply the 
equipartition rule, the use of which renders superfluous one of the two 
branch computations.

The equipartition rule (cf. §4) states that at particle velocities where 
resonance occurs, the change in L with velocity receives exactly equal 
contributions from the resonance curve and from the close collisions. The 
increase in L between two velocities tq and v2 is thus twice the contribution 
from the resonance curve, i.e.

(.zr (q lvr) •
L(p1)-L(^) = 2\ ~-Fr(z), (18)

J Zr (V 2 I V F ) ~

where Fr(c) is the oscillator strength of the resonance curve, as a function 
of z, and zr(u) denotes the value of z on the resonance curve as a function 
of the variable u, i.e. "r2(u) = - /2 /\(//,zr(u)). By direct integration over 
the resonance curve, Fr(z) is easily obtained,

6z4 

udii

where the integral over u is from below to above the resonance curve. The 
quantity (df1(u,z)/udii)r is the partial derivative for constant z, taken at the 
resonance curve. The oscillator strength Fr remains close to unity in the 
upper part of the resonance curve. In fact, from (18') we find by series 
expansion in powers of u~2,

12 / 1 Z2\
r 1 1 7 5 u4 & \ u6 ’n4/’

where we note the absence of a term proportional to u 2.
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and neglecting terms of higher order in /2 we obtain

l"3log"^ (19')

(19)

Combining (19') with (17), and taking only the first terms in a series 
expansion in vp2/v2, the result is

(20)

The formula (20) is applicable when v/vF is above the minimum of the 
resonance curve. According to the equipartition rule, every term in (20) is 
contributed equally from the resonance curve and from close collisions, 
except for the additive constant obtained by integration over the region 
where u is below the minimum of the resonance curve.

It may be noted that the first correction term in (20) is the average 
kinetic energy, <nu^/2> = (3/10)nwF2, of an electron in the gas, divided 
by mu212*.  This appearance of the average kinetic energy seems to be quite 
general for an atomic system. At least, Fano and Turner (5> obtained this 
result for any atom in the case of resonance collisions, while Walske (4) 
obtained it for both resonance and close collisions in the hydrogen atom. 
Moreover, the equipartition rule is found to hold for the v~2 and p^-terms 
in expansions of shell corrections for atomic systems (cf. refs. 5 and 4).

The comparisons made here indicate a wide applicability of the notion 
of a free gas, in the case of atomic electrons. As we have seen, an average 
over free electron gases gives asymptotically the same n_2-correction as a 
direct computation. The picture of the close collisions involving free elec
trons, with momentum distribution given by their local kinetic ^energies 
in the atom, seems appropriate and useful. Having such results in mind, 
it would seem profitable to estimate stopping in atomic systems on the 
basis of approximate results for electron gases. If a suitable approximation

* In a more comprehensive manner, and apart from a constant, we may write (20) as the 
average (log (v2 - v.2)).
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is introduced for the electron gas, it may be averaged over the atom in order 
to obtain, e.g., the shell correction — CfZ, which quantity has been notoriously 
difficult to estimate in other ways. This approach is quite similar to that 
used previously h) in a more crude approximation.

§ 3. Numerical Results

In the preceding chapter, the behaviour of the factor L in the specific 
energy loss was discussed on the basis of sum rules and series developments. 
In the present chapter we present the results of a direct numerical evaluation 
of L.

The double integral (8), which constitutes the basis for the numerical 
computation of L, cannot be evaluated by simple quadrature. When the 
functions f1 and f2 given by (6') are introduced in the integrand, it is found 
that in the domain u>z+l the integral degenerates into a line integral.

The integral is thus composed of two different parts. One is the line 
integral along the curve given implicitly by ez(zz, z) = 0 in the region zz> z + 1. 
The other is the double integral over the region of close collisions, | u — z| < 1 , 
in which region /‘2 (u,z)>0. A direct numerical integration in the latter 
region is quite straightforward, except for a singularity appearing at the 
point (u, z) = (zz0, zz0 - 1), where the resonance curve joins the region of 
close collisions. Similarly, it is particularly difficult to identify the re
sonance curve in the neighbourhood of this point.

For numerical evaluations it is important that the line integral along 
the resonance curve need not at all be performed, since, according to the 
equipartition rule, it is equal to the corresponding integral over close col
lisions. Moreover, computations of the double integral in the difficult region 
around u = zz0 may be avoided too. This is because the integral at 
very high velocities is given accurately by the two first terms in formula 
(20). Therefore, a numerical calculation of the difference LÇiij) - L(z>2), which 
is twice the contribution from the region | z — zz | < 1, can give us L(n2) for 
all u 2 > Up uo.

Numerical computations along these lines were performed by Dr. Petek 
Naur on the electronic computer DASK. The main results are shown in 
Table 2. The quantity L is here given as a function of the variable y defined 
in (11), and for six values of /2, as in Table 1.

In the numerical treatment we actually did make computations which 
are unnecessary according to the above. We evaluated the line integral 
along (he resonance curve, and because of the above-mentioned difficult- 
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ies near the point (zz0, zz0 — 1), we were led to a closer scrutiny of the inte
gral, which suggested the validity of an equipartition rule. The equipartition 
rule is thus confirmed by the numerical calculations, as far as they go.

Fig. 4. The factor L as a function of the velocity parameter y from (11), for three gas densities, 
X2 = 1, 0.1 and 0.01, i. e., I = hcoo = 3.18, 101 and 3180 eV, respectively. Straight line indicates 

asymptotic behaviour, L = log y.

The numerical results for L(y) contained in Table 2 are illustrated on 
the Figs. 4 and 5. In Fig. 4 the results are shown for /2 = 1, 0.1 and 0.01, 
the abscissa y being given in a logarithmic scale. These three values of /2 
correspond to gas densities n = 0.84 • 1022, 0.84-IO25 and 0.84-1 ()28 cm3, 
or to average excitation potentials I = tw>a = 3.18, 101 and 3180 eV, re
spectively. Il is seen that the curves approach the straight line log y, which 
is the asymptotic limit for large values of y.

A more detailed comparison with asymptotic formulas is shown in 
Fig. 5, where the full-drawn curves show L(y) as a function of y for /2 = 0.1 
and 0.01. The dashed curves which join the L(y) curves for small values 
of y represent formula (12), with the coefficient Cx taken from Table 1. 
For large values of y the L(y) curves approach another set of dashed curves. 
These curves represent the two first terms in the expansion (20), i.e. cor
rection terms of order p-2 to the limiting expression, log y, also indicated 
on the figure. It is noted that the v~2 term gives a substantial improvement 
over the simple expression (4) for low gas densities, and that the two for-
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Table 2
The factor L in the specific energy loss computed numerically as a function of the 
particle velocity for six values of the density parameter in (7), y2 = 1, 10_1/2, 10“1, 
10_4/3, IO-5'3 and 10-2. L is given as a function of the parameter y, defined in (11).

y log y
z2 = 0.01 y2 = 0.02154 Z2 = 0.046416

I'/Vf i (y) e/Pj, f (y) v/vF My)

0.10000 - 0.07598 0.0007995 0.09206 0.001145 0.1115 0.001540
0.31623 - 0.13512 0.004491 0.1637 0.006398 0.1983 0.008642
1.0000 0 0.2403 0.02522 0.2909 0.03575 0.3527 0.04839
1.7783 0.5757 0.3204 0.05963 0.3882 0.08459 0.1703 0.1141
3.1623 1.1513 0.4273 0.1407 0.5177 0.1990 0.6272 0.2675
5.6235 1.7269 0.5698 0.3306 0.6903 0.4647 0.8363 0.6220

10.000 2.3026 0.7598 0.7772 0.9206 1.067 1.115 1.420
14.678 2.6864 0.9205 1.341 1.115 1.833 1.351 2.247
21.544 3.0701 1.115 2.280 1.351 2.641 1.637 2.804
31.623 3.4539 1.351 3.029 1.637 3.191 1.983 3.285
56.235 4.0295 1.802 3.820 2.183 3.893 2.645 3.939

100.00 4.6052 2.403 4.496 2.909 4.530 3.527 4.555
316.23 5.7565 4.273 5.724 5.177 5.734 6.272 5.741

1000.0 6.9078 7.598 6.898 9.206 6.901 11.15 6.903

5 10 15 20 25 y
Fig. 5. The factor L as a function of the velocity parameter y from (11), for y < 25 and for two gas 
densities, y2 = 0.1 and 0.01. Dashed curves indicate asymptotic formulas (12) and L = ^gy
s’/2 (5 Zy)-1> valid for small and large y, respectively. The function logy is also indicated.
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Table 2 (cont’d)
For large y, L approaches the asymptotic formula L = log y, shown in the second 
column. For each value of /2the velocity is also given in units of the Fermi velocity uF.

y log y
Z2 = o-i X2 - 0.31623 z2 = i

L(y) v/i>F L (y) L(y)

0.10000 - 0.1351 0.001941 0.1802 0.002282 0.2403 0.001971
0.31623 - 0.2403 0.01091 0.3204 0.01299 0.4273 0.01182
1.0000 0 0.4273 0.06119 0.5698 0.07451 0.7598 0.0743
1.7783 0.5757 0.5698 0.1443 0.7598 0.1791 1.013 0.191
3.1623 1.1513 0.7598 0.3386 1.013 0.4323 1.351 0.502
5.6235 1.7269 1.013 0.7879 1.351 1.078 1.802 1.448

10.000 2.3026 1.351 1.838 1.802 2.074 2.403 2.177
14.678 2.6864 1.637 2.414 2.183 2.542 2.911 2.604
21.544 3.0701 1.983 2.898 2.645 2.976 3.527 3.016
31.623 3.4539 2.403 3.342 3.204 3.392 4.273 3.418
56.235 4.0295 3.204 3.968 4.273 3.996 5.698 4.009

100.00 4.6052 4.273 4.572 5.698 4.586 7.598 4.595
316.23 5.7565 7.598 5.746 10.13 5.751 13.51 5.753

1000.0 6.9078 13.51 6.904 18.02 6.906 24.03 6.907

mulas (12) and (20) taken together essentially reproduce L(y) for /2 / 0.1. 
For large densities, higher order terms in (20) are important. They can be of 
the same order of magnitude as the terms, and they have the same sign.

§ 4. Summation Rules

In this section are treated various properties of integrals over generalized 
oscillator strengths. These integral properties we call summation rules. In 
the preceding sections two such rules were used repeatedly, viz. the familiar 
Bethe sum rule and the equipartition rule. The Bethe sum rule has been 
previously discussed by several authors/3) Still, we shall give a derivation 
of it in the present case, in order to check the properties of the dielectric 
constant given by (5), and also as an introductory to the equipartition rule, 
where we utilize the analytic properties of the dielectric constant as a function 
of momentum, k, and phase velocity, co/A.

The Bethe sum rule.
In the dielectric formulation, the field equations and the absorption are 

contained in the dielectric constant. The Bethe sum rule concerns an inte- 
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gration over co of 1/ez, for fixed k. In the integration we have to do with 
retarded solutions of the equations of motion. This is equivalent to the re
quirement that an external disturbance of the system, represented by e.g. 
o0(r, t) = f(r)ô(t —10~), never gives rise to a field different from zero prior 
to the disturbance, i.e. for t< t0. When integrating 1/e1 over the frequency 
co in order to find physical effects, this requirement fixes the path of inte
gration in the complex co-plane to be above all poles of 1 /ez.

Returning to the Bethe sum rule (16), and using the just mentioned path 
of integration, we are entitled to change the contour to a large semi-circle, 
I co I = const., in the upper half of the complex co-plane, since there are no 
poles above the original path of integration. However, in the region of large 
co and for fixed k, e1 must always behave as

2
£z(Å',co)->l — °„ , for | co | —> co . (21)

ar

We apply (21) to the integration over the semi-circle and obtain (16).
The sum rule is thus directly a consequence of the demand of retard

ation. In the present description of an electron gas in the ground state, 
the requirement of retardation is expressed in (5) by the replacement of 
co by co + iô, leading to a retarded dielectric constant El(k,co), which is a 
complex function of k and co. In this description the path of integration is 
on the real co-axis. The path is in fact above all poles of l/ez, as can be 
shown explicitly from (5). In order to prove it, we may note that e1 in (5) 
is a real and even function of co', where co' = co + z’ô. This function has 2 A’ 
zeros, which all lie on the real co'-axis. For k>2kF (or z> 1) this is easily 
seen from the fact that e1 has 2AT poles on the real co'-axis. In between these 
poles are trapped 2 A7-2 zeros of e1, and outside the poles are two more 
zeros, since e1 has to increase from a negative value to +1. The two latter 
zeros ultimately become the plasma resonance, at low values of k. In 
order to show that all 2 A7 zeros lie on the real co'-axis also for k< 2kF, 
one must further take into account that the gas is in its ground state, f(ßn) 
being the distribution function of a degenerate Fermi gas.

The equipartition rule.
While the Bethe sum rule concerns the integral of 1 /e1 over co or u for 

fixed k or z, the equipartition rule has to do with the integral of 1 /e1 over z 
for fixed u. The rule states that an integral - proportional to that in (8) - 

(22)
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receives equal contributions, and 3C, respectively, from the plasma re
sonance and from the region of close collisions, u-l<z<u+ 1 (of. Fig. 3). 
In order to prove this, it is important to find the poles of 1 /e1, i.e. the zeros 
of El, as a function of z for fixed u. It is seen from (5) that whereas e1 has 
A7 zeros as a function of co'2 (or u'2 = a)'2/k2vF2') for fixed z, there must be 
2V+I zeros of e1 as a function of x = z2 for fixed u. For a large real value 
of ii, above the value which corresponds to the minimum in the plasma 
resonance in Fig. 3, all N + 1 zeros lie on the real .r-axis. One zero occurs 
at a low .r-value, and is determined by the intersection with the plasma re
sonance curve. The remaining N zeros are grouped together in the interval 
(u'— l)2 æ< (u'+ l)2, and may be identified with the N zeros of e1 as 
a function of u2 for fixed z and ii > 1—z.

We note that in the retarded dielectric constant used in (22), u has a 
small positive imaginary part. Suppose now that co is positive. It is seen 
directly from (5) that a small positive imaginary part id added to co, or to u, 
is equivalent to a displacement of the zeros of e1(u, .r1/2) in the complex 
.r-plane in such a way that the zero at plasma resonance lies below the real 
.r-axis, while the zeros in the region (ii - l)2 < x < (u + l)2 lie above this 
axis. The opposite sense of displacement in these two cases appears be
cause the slope du/dz is negative at the plasma curve, but positive at the 
other zero curves in the u, z-plane, cf. Fig. 3. The integral (22) may thus 
alternatively be written

5 = ■ 2 -1 ) • (23>

Here, sl is a real function of ii and x, and the path of integration C is in
dicated on Fig. 6.

In order to complete the proof of the equipartition rule, we merely note 
that, if we revert the sign of the plasma resonance contribution, %r, in (22), 
we obtain the path of integration C' (cf. Fig. 6), which may be deformed 
into a large circle, |x| = const., in the complex r-plane. However, for large 
values of |.r| (or |À-|), the dielectric constant must behave as

(24)

according to (5). Since the integral of 1/(1 + /2/3x2)-l along a large circle 
tends to zero, we observe that a change of sign of 'n (23) makes the 
integral vanish, i.e. = $c. This is the equipartition rule. It is based on 
the circumstances that the integral around the plasma resonance in the 
.r-plane is in the opposite sense of the integration around the remaining
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A
X - plane

______________________ C'

Fig. 6. Illustration of contours C and C', in complex x-plane. Isolated cross on real x-axis indi
cates plasma pole; group of crosses indicates poles in close collisions. For further explanation 

cf. text.

resonances, and that the integral of (1/e1 - 1) vanishes at large x. Moreover, 
it can only be used for u-values (u zz0, cf. Fig. 3) where plasma resonance 
occurs. For lower values of u, the plasma resonance splits up in two poles 
in the complex x-plane.

The contents of the equipartition rule may be stated in a more pictorial 
way. Thus, a constant value of u implies a constant phase velocity, vph = 
co/k = U’VF, of the emitted waves. When the creation of waves is due to 
a heavy particle travelling with constant velocity v, all waves emitted with 
the phase velocity vptl will have an angle & with the particle motion where 
cos # = vpfJv. In this direction two kinds of waves travel, i.e. plasma 
resonance waves and essentially single electron waves, and according to 
the equipartition rule the two waves moving in the direction 0 carry an 
equal amount of energy. It may be interesting to compare the group velo
cities of the two wave types. The electron waves have approximately the 
connection co = hk2/2in between k and co, if vph is large compared to vF. 
Accordingly, they have a group velocity veJr = 2uph, i.e. larger than the phase 
velocity. The plasma waves, on the other hand, have a rather well-defined 
group velocity, which according to the dispersion relation (10) is given by

and thus much less than v h, since vpfl>i)F-
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We shall not treat the equipartition rule for an atomic system in general. 
However, it may be noted that the asymptotic relation (24) always holds 
in the non-relativistic case, which implies that the sum of residues in the 
complex À'2-plane is zero. Therefore, if residues are vanishing except on the 
real, positive Å2-axis, the contributions to energy loss at constant phase 
velocity, to/k, may be divided in two parts with equal contribution to energy 
loss, so that an equipartition rule holds. The two parts are analogous to, 
respectively, the plasma resonance and the close collisions in Fig. 6; they 
have the same sequence on the P-axis, and the path of integration should 
be as in Fig. 6.
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